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Constructal design has been applied to a large variety of problems in nature and engineering to optimize
the architecture of animate and inanimate flow systems. This numerical work uses this method to seek
for the best geometry of a T–Y assembly of fins, i.e., an assembly where there is a cavity between the two
branches of the assembly of fins. The global thermal resistance of the assembly is minimized by geomet-
ric optimization subject to the following constraints: the total volume, the volume of fin-material, and
the volume of the cavity. Parametric study was performed to show the behavior of the twice minimized
global thermal resistance. The results show that smaller cavity volume and larger fins volume improve
the performance of the assembly of fins. The twice minimized global thermal resistance of the assembly
and its corresponding optimal configurations calculated for the studied parameters were correlated by
power laws.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Constructal design [1–3] has been largely used to optimize flow
systems in the engineering field [4–7]. This method is supported by
Constructal law: ‘‘For a flow system to persist in time (to survive) it
must evolve in such way that it provides easier and easier access to
the currents that flow through it”. The applicability of this law to
the physics of natural and engineered flow systems has been dis-
cussed largely in the literature [2,3,7,8].

The design of fins with application to heat exchangers has been
also documented in the literature [9,10]. The analysis of extended
surfaces applying constructal design, however, is a recent fact.
Bonjour et al. [11] studied analytically and numerically the geo-
metrical optimization of radial and branched fins for a coaxial
two-stream heat exchanger exploring the relationship between
the performance and the architecture of the fins. Vargas et al.
[12] conducted a three-dimensional study to optimize staggered
arrangements of finned circular and elliptic tubes heat exchanger.
This was an experimental and numerical work. It was calculated
the optimal eccentricity, tube-to-tube and fin-to-fin spacing which
maximizes heat transfer rate between a bundle of finned tubes in a
given volume.

Bejan and Almogbel [13] optimized a T-shaped fin assembly.
The objective was to maximize the global thermal conductance
subject to total volume and fin-material constraints. Several
configurations were studied: assemblies of plate fins and cylin-
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drical fins, the tau-shaped assembly, and the umbrella-shaped
construct using cylindrical fins. Their paper also shows a char-
acteristic that is common to many optimized constructs: some
geometrical features are relatively robust, i.e., insensitive to
change in some design parameters. Lorenzini and Rocha [14]
minimized the global thermal resistance subject to the total
volume and fin material constraints to optimize a Y-shaped
assembly of fins. This was a complete optimization, i.e., all
the degrees of freedom were optimized and the optimized glo-
bal thermal resistance and optimal shapes were correlated by
power laws.

This work proposes the geometrical optimization of T–Y
assembly of fins, i.e., an assembly where there is a cavity be-
tween the two branches of the assembly of fins. The objective
is to minimize the global thermal resistance of the assembly
subject to the total volume and the fin-material constraints,
therefore the optimal configuration of the assembly of fins [H0/
L0, H1/L1]optimal can be determined for the all the studied
parameters.

2. Mathematical model

Consider the T–Y-shaped assembly of fins shown in Fig. 1. The
configuration is two-dimensional, with the third dimension (W)
sufficiently long in comparison with the height H and the length
L of the volume occupied by the assembly of fins. The heat transfer
coefficient h is uniform over all the exposed surfaces. The heat cur-
rent through the root section (q1) and the temperature of the fluid
(T1) are known. The maximum temperature (Tmax) occurs at the
root section (y = 0) and varies with the geometry.
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Nomenclature

a dimensionless parameter, Eq. (9)
A area [m2]
H height [m]
h heat transfer coefficient [W m�2 K�1]
k fin thermal conductivity [W m�1 K�1]
L length [m]
q heat current [W]
r length of the root section [m]
t thickness [m]
T temperature [K]
V volume [m3]
W width [m]

Greek symbols
a angle between the tributary branches and the horizon-

tal

h dimensionless temperature, Eq. (5)
/ volume fraction of fin material

Subscripts
f fin material
m single optimization
mm double optimization
o optimal
oo twice optimized
r root (Hr is the distance between the basis of the cavity

and the wall)
0 cavity between the branches of the assembly
1 fin material

Superscript
(~) dimensionless variables, Eqs. (6), (7), (10), (11), (14),

(15)
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The objective of the analysis is to determine the optimal geom-
etry (H0/L0, H1/L1, H/L) that is characterized by the minimum global
thermal resistance (Tmax � T1)/q1. According to the constructal de-
sign [3], this optimization can be subjected to two constraints,
namely, the total volume (i.e., frontal area) constraint,

A ¼ HL ð1Þ

and the fin-material volume constraint,

Af ¼ HL� 2L1ðH � H1Þ � H0L0: ð2Þ

The cavity area located between the two branches of the assem-
bly of fins is also considered constraint to diminish one degree of
freedom of the assembly,

A0 ¼ H0L0: ð3Þ

Eqs. (2) and (3) can be expressed as the fin volume fraction

/1 ¼ Af=A ð4Þ

and the cavity volume fraction

/0 ¼ A0=A: ð5Þ

The analysis that delivers the global thermal resistance as a
function of the assembly geometry consists to solve numerically
the heat conduction equation along the T–Y-shaped assembly of
Fig. 1. Y–T-shaped assembly of fins analyzed.
fins where the fins are considered isotropic with constant thermal
conductivity k,

@2h
@~x2 þ

@2h
@~y2 ¼ 0 ð6Þ

where the dimensionless variables are

h ¼ T � T1
q1=kW

ð7Þ

and

~x; ~y; ~H0; ~L0; ~H1; ~L1; ~H; ~L ¼ x; y; H0; L0; H1; L1; H; L

A1=2 : ð8Þ

The boundary conditions are given by

� @h
@~y
¼ 1

~r
at ~y ¼ 0 ð9Þ

where ~r is the dimensionless width of the root section and

� @h
@~y
¼ a2

2
h or � @h

@~x
¼ a2

2
h at the other surfaces: ð10Þ

The parameter (a) that emerged in Eq. (10) was already used by
Bejan and Almogbel [13] and defined as

a ¼ 2hA1=2

k

 !1=2

ð11Þ

The dimensionless form of Eqs. (1), (4), and (5) are

1 ¼ ~H~L ð12Þ
/1 ¼ ~H~L� 2~L1ð~H � ~H1Þ � ~H0

~L0 ð13Þ
/0 ¼ ~H0

~L0 ð14Þ

The maximal excess temperature, h1,max is also the dimension-
less global thermal resistance of the construct,

h1;max ¼
T1;max � T1

q1=kW
ð15Þ

In the constructal design realm, the global thermal resistance or
the global thermal conductance are used as performance indicator
instead of the maximum fin efficiency. In this work we chose the
global thermal resistance as performance indicator because we
can get it directly from the temperature field calculated in the
numerical simulation.



Table 2
Comparison between the results obtained using our MATLAB partial–differential-
equations (PDE) toolbox code (a = 0.1, /1 = 0.2, /0 = 0.00001, H/L = 0.0426, H1/
L1 = 0.0154, H0/L0 = 1). and the analytical results [2]

L1/L0 t1/t0 q1;max

Analytical 0.07 4.0 0.033
Numerical 0.07026 4.0041 0.03307

Fig. 2. The effect of H0/L0 and H1/L1 in the dimensionless maximal temperature.

Fig. 3. The optimal results obtained in the first optimization.
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3. Numerical model

The function defined by Eq. (15) can be determined numerically,
by solving Eq. (6) for the temperature field in every assumed con-
figuration (H/L, H0/L0, H1/L1), and calculating h1,max to see whether
h1,max can be minimized by varying the configuration. In this sense,
Eq. (6) was solved using a finite elements code, based on triangular
elements, developed in MATLAB environment, precisely the PDE
(partial-differential-equations) toolbox [15]. The grid was non-uni-
form in both ~x and ~y, and varied from one geometry to the next.
The appropriate mesh size was determined by successive refine-
ments, increasing the number of elements four times from the cur-
rent mesh size to the next mesh size, until the criterion
jhj

1;max � hjþ1
1;max=h

j
1;maxj < 2� 10�4 was satisfied. Here hj

1;max repre-
sents the maximum temperature calculated using the current
mesh size, and hjþ1

1;max corresponds to the maximum temperature
using the next mesh, where the number of elements was increased
by four times. Table 1 gives an example of how grid independence
was achieved. The following results were performed by using a
range between 2,000 and 10,000 triangular elements.

To test the accuracy of the numerical code, the numerical re-
sults obtained using our code in Matlab PDE have been compared
with the analytical results obtained by Bejan and Almogbel [13].
The domain in this case was a T-shaped assembly of fins (/0 = 0).
Table 2 shows that the two sets of results agree very well.

4. Optimal geometry

The numerical work consisted of determining the temperature
field in a large number of configurations of the type shown in
Fig. 1. Fig. 2 shows that there is an optimal (H1/L1) that minimizes
the global thermal resistance when the parameters (u0,u1, and a)
and the degrees of freedom (H/L, H0/L0) are fixed. This figure also
shows that there is a second opportunity of optimization. There-
fore, the results shown in Fig. 2 are summarized in Fig. 3, where
the optimal ratio (H1/L1)o and the minimized maximal tempera-
ture, ðh1;maxÞm, calculated in Fig. 2, are plotted as function of the ra-
tio (H0/L0). The curve that represents ðh1;maxÞm in Fig. 3 indicates a
shadow minimum when (H0/L0) is equal to 9.6. This twice mini-
mized maximal temperature is named ðh1;maxÞmm and its value is
38.15. The corresponding optimal ratios are named (H0/L0)o and
(H1/L1)oo and its values are also shown in Fig. 3. The subscript ‘‘o”
means that the ratio (H0/L0) was minimized once, while the sub-
script ‘‘oo” means that the ratio (H1/L1) was minimized twice.
The optimal ratio (H1/L1)o is approximately constant and equal to
0.07. Fig. 3 also shows that the optimal distance between the basis
of the cavity and the wall ð~HrÞdecreases when the ratio H0/L0 in-
creases and the optimal value is equal 0.02, i.e., ~Hr is optimal when
the cavity penetrates almost entirely in the fin.

The procedure used in Figs. 2 and 3 is now repeated in Fig. 4 to
illustrate the effect of the parameters /0 and /1 in the minimal glo-
bal thermal resistance. This figure shows that ðh1;maxÞmm decreases
when /0 decreases and /1 increases. This means that smaller cav-
ities and larger fins improve the performance of the assembly of
fins. Fig. 5 shows that the optimal ratio (H0/L0)o is almost insensi-
Table 1
Numerical tests showing the achievement of grid independence (u0 = 0.1, u1 = 0.2,
a = 0.1, H/L = 1, H0/L0 = 9, H1/L1 = 0.07)

Number of elements hj
1;max jððhj

1;max � hjþ1
1;maxÞÞ=h

j
1;maxj

141 38.3411 8.6069 � 10�4

564 38.3741 5.0815 � 10�4

2256 38.3936 1.8489 � 10�4

9024 38.4007
tive to changes in the volume occupied by the fins, but it decreases
when the volume of the cavity increases. The effect of the param-
eters /0 and /1 in the optimal ratio (H1/L1)oo is shown in Fig. 6. In
general, (H1/L1)oo increases when /0 and /1 also increase. However,
it increases more rapidly when /1 is larger than 0.3. Fig. 7 shows
that ð~HrÞoo does not depend on the volume occupied by the fins,
but it decreases when the volume occupied by the cavity also de-
creases. This means that the smaller the value of /0, the more
the cavity penetrates in the fin and approximates to the wall.

Fig. 8 presents the effect of the parameter a in the optimal con-
figuration when the aspect ratio of the assembly of fins, the volume
occupied by the fins, and the volume occupied by the cavity are



Fig. 4. The effect of /1 and /0 in the dimensionless minimal temperature optimized
twice, ðh1;maxÞmm.

Fig. 5. The effect of /1 and /0 in the internal shape (H0/L0)o.

Fig. 6. The effect of /1 and /0 in the external shape (H1/L1)oo.

Fig. 7. The effect of /1 and /0 in the distance optimal distance ~Hr .

Fig. 8. The effect of the parameter a on the optimal shapes and performance.

Fig. 9. The effect of the ratio H/L on the optimal shapes and performance.
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fixed. This figure shows that the global thermal resistance de-
creases when a increase. This behavior was expected because it
was already obtained by Bejan and Algmobdel [13] and Lorenzini
and Rocha [14]. The optimal ratio (H1/L1)oo decreases when the va-
lue of a increases. (H0/L0)o, however, is almost insensitive to
changes in the value of a because it varies approximately 3.5% in
the range of the studied a values. Eq. (16) correlates the global



Fig. 10. The best configurations calculated in Fig. 9.
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thermal resistance, ðh1;maxÞmm, as function of the parameter a, the
optimal ratio (H1/L1)oo, and the optimal ratio (H0/L0)o within 1%,

ðh1;maxÞmm ¼ 2:321� 1014a�2:361 H0

L0

� ��12:74

0

H1

L1

� ��0:812

oo
ð16Þ

Eq. (16) is valid in the following ranges: 0.05 6 a 6 0.2, 19 6 (H0/
L0)o 6 19.7, and 0.018 6 (H1/L1)oo 6 0.032. The range 0.05 6 a 6 0.2
was chosen to be consistent with practical values. Bejan and Almog-
bel [13] presented an example that could be applied to forced con-
vection: the order of magnitude of h is 102 W/m2 K, the thermal
conductivities of aluminum and cooper are of order 102 W/m K,
and the length scale A1/2 � 10�2 m results a � 0.1 in Eq. (11).
Fig. 8 also compares the performance of the twice optimized Y–T-
with the best Y-shaped assembly of fins as function of the parame-
ter a. This figure shows that these configurations have similar per-
formance, but the Y–T-assembly is slightly superior for values of
a P 0.1 when H/L = 1. As will see in Fig. 9, the performance of this
assembly increases as H/L also increases which makes its perfor-
mance superior to the Y-assembly of fins when H/L > 1. For exam-
ple, if a = 1 and /1 = 0.1, the best Y–T-shaped assembly of fins
with H/L = 2 performs approximately 8% better than the optimized
Y-shaped assembly of fins.

Fig. 9 shows that ðh1;maxÞmm and (H1/L1)oo decrease when the as-
pect ratio of the assembly of fins, H/L, increases. The optimal ratio
(H0/L0)o, however, is very sensitive to the changes in the ratio H/L
and increases when this ratio also increases. These optimal perfor-
mance and configurations are correlated by Eq. (17) within 0.1%,

ðh1;maxÞmm ¼ 31:27
H
L

� ��0:2527 H0

L0

� �0:214

o

H1

L1

� �0:1061

oo
ð17Þ

Eq. (17) is valid in the following ranges: 0.5 6 H/L 6 2.0, 9.5 6 (H0/
L0)o 6 39.2, and 0.016 6 (H1/L1)oo 6 0.031.

The best configurations for several values of the aspect ratio H/L
calculated in Fig. 9 are shown in scale in Fig. 10.

5. Conclusions

This work presented the numerical optimization of a T–Y
assembly of fins, i.e., an assembly where there is a cavity between
the two branches of the assembly of fins. The dimensionless global
thermal resistance was minimized by geometrical optimization
subject to three constraints: the total volume, the fin material vol-
ume, and the cavity volume. The search for the best architecture
was performed varying the two degrees of freedom that were ra-
tios H0/L0, and H1/L1.

The double optimization showed the emergence of an optimal
architecture [(H1/L1)oo, ð~HrÞoo and (H0/L0)o] when the other param-
eters (a, H/L, /0 and /1) were fixed.
An important result is that the twice optimized global thermal
resistance, ðh1;maxÞmm, decreases when /0 decreases and /1 in-
creases. This means that smaller cavities and larger quantity of
fin material improve the performance of the assembly of fins.

It was also observed that the optimal distance between the
basis of the cavity and the wall ð~HrÞo decreases when the ratio
H0/L0 increases, and its optimal value occurs when the cavity
penetrates almost totally in the fin. When it is optimized twice,
ð~HrÞoo value does not depend on the volume occupied by the
fins, but it decreases when the volume occupied by the cavity
also decreases. This means that the smaller the value of /0,
the better the performance of the assembly of fins, and the more
the cavity penetrates in the fin, i.e., its basis approximates to the
wall.

Parametric study showed that the twice optimized global ther-
mal resistance, ðh1;maxÞmm and the optimal ratio (H1/L1)oo decrease
when the value of the parameter a increases. (H0/L0)o, however,
is almost insensitive to changes in the value of a. These optimal
values were correlated within 1% by Eq. (16). ðh1;maxÞmm and (H1/
L1)oo also decrease when the aspect ratio of the assembly of fins,
H/L, increases. The optimal ratio (H0/L0)o, however, is very sensitive
to the changes in the ratio H/L and increases when this ratio also
increases. These optimal performance and configurations are cor-
related within 0.1% by Eq. (17).
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